Author Affiliations
Abstract
Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA

The need for high-speed imaging in applications such as biomedicine, surveillance, and consumer electronics has called for new developments of imaging systems. While the industrial effort continuously pushes the advance of silicon focal plane array image sensors, imaging through a single-pixel detector has gained significant interest thanks to the development of computational algorithms. Here, we present a new imaging modality, deep compressed imaging via optimized-pattern scanning, which can significantly increase the acquisition speed for a single-detector-based imaging system. We project and scan an illumination pattern across the object and collect the sampling signal with a single-pixel detector. We develop an innovative end-to-end optimized auto-encoder, using a deep neural network and compressed sensing algorithm, to optimize the illumination pattern, which allows us to reconstruct faithfully the image from a small number of measurements, with a high frame rate. Compared with the conventional switching-mask-based single-pixel camera and point-scanning imaging systems, our method achieves a much higher imaging speed, while retaining a similar imaging quality. We experimentally validated this imaging modality in the settings of both continuous-wave illumination and pulsed light illumination and showed high-quality image reconstructions with a high compressed sampling rate. This new compressed sensing modality could be widely applied in different imaging systems, enabling new applications that require high imaging speeds.

Photonics Research
2021, 9(3): 03000B57
Author Affiliations
Abstract
We demonstrate the long distance transmission of single-carrier frequency division multiple address signals by directly-modulated optically injection-locked vertical-cavity surface-emitting laser. Transmission distance as long as 50 km is achieved at 5 Gb/s (2.5 Gb/s for each user) through data pattern inversion and higher frequency response gain under optical injection locking.
140.3520 Lasers, injection-locked 250.7260 Vertical cavity surface emitting lasers 
Chinese Optics Letters
2012, 10(9): 091407
作者单位
摘要
北京大学信息科学技术学院量子电子学研究所,区域光纤通信网与新型光通信系统国家重点实验室,北京 100871
介绍了一种新型半导体可饱和吸收镜(SESAM)的原理与特性,并用它来实现掺铒光纤激光器的锁模飞秒脉冲的生成。这种新型宽带SESAM调制深度可以达到20%,用在1.5 μm波段的环形腔掺铒光纤激光器里,实现自启动锁模。锁模光谱以1559 nm为中心,半峰全宽为9 nm,锁模激光脉冲串重复频率为25.6 MHz,输出功率14 mW,自相关仪测得脉宽为170 fs。
超快光学 锁模 半导体可饱和吸收体 光纤激光器 
光学学报
2009, 29(11): 3121
作者单位
摘要
北京大学信息科学技术学院量子电子学研究所区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871
对配对啁啾镜传统的优化过程进行了改进,并且尝试了新的多个啁啾镜匹配的方法。理论上实现了在700~1050 nm光谱范围内,两个啁啾镜配对色散总和振荡小于±10 fs2,三个啁啾镜配对色散总和振荡小于±15 fs2。此配对啁啾镜所实现的精确补偿色散,是获得极短光脉冲的基础,可以用于飞秒激光的脉冲压缩。
超快光学 啁啾镜 色散补偿 群延迟 周期量级脉冲 
光学学报
2008, 28(s1): 89

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!